Rabu, 02 September 2015

Makalah "pembangkit listrik tenaga nuklir" 02

Kata Pengantar
Tenaga nuklir dianggap menyeramkan, sesuatu yang membahayakan, Di karenakan masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang di jatuhkan di Hirosima dan Nagasaki dalam Perang Dunia II tahun 1945. Akibat yang ditimbulkan oleh bom tersebut sehingga pengaruhnya masih di rasakan sampai sekarang. Maka dari itu masyarakat pada umumnya masih tidak menginginkan pembangunan PLTN di indonesia sendiri.
Dalam penulisan makalah ini sendiri Penulis mengalami beberapa rintangan yang menghalangi lancarnya penyelesaian makalah ini diantaranya yaitu sangat terbatasnya media yang menyediakan data dan sumber yang dibutuhkan, dan masalah teknis lainnya.
Penulis memanjatkan puji dan syukur yang sebesar-besarnya kepada Tuhan Yang Maha Esa karena atas rahmat dan anugrahnya-Nya lah Penulis dapat merampungkan makalah ini. Tak lupa Penulis juga turut berterimakasih kepada narasumber-narasumber yang telah menyediakan data dan informasi yang makalah ini butuhkan, serta dukungan dari orang-orang sekitar. Apabila ada kesalahan dan kekurangan dari makalah ini mohon koreksi dan saran untuk Penulis kedepannya. Semoga makalah ini boleh bermanfaat dan menambah pengetahuan pembaca tentang Pembangkit Listrik Tenaga Nuklir.







Depok, 5 Januari 2015





Tim Penulis
BAB I
PENDAHULUAN
1.1 Latar Belakang
Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan di Hiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian dahsyatnya akibat yang ditimbulkan oleh bom tersebut sehingga pengaruhnya masih di rasakan sampai sekarang. Di samping sebagai senjata pamungkas yang dahsyat, sejak lama orang telah memikirkan bagaimana cara memanfaatkan tenaga nuklir untuk kesejahteraan umat manusia. Sampai saat ini tenaga nuklir, khususnya zat radioaktif telah dipergunakan secara luas dalam berbagai bidang antara lain bidang industri, kesehatan, pertanian, peternakan, sterilisasi produk farmasi dan alat kedokteran, pengawetan bahan makanan, bidang hidrologi, yang merupakan aplikasi teknik nuklir untuk non energi. Salah satu pemanfaatan teknik nuklir dalam bidang energi saat ini sudah berkembang dan dimanfaatkansecara besar-besaran dalam bentuk Pembangkit Listrik Tenaga nuklir (PLTN), dimana tenaga nuklir digunakan untuk membangkitkan tenaga listrik yang relatif murah, aman dan tidak mencemari lingkungan.
Pemanfaatan tenaga nuklir dalam bentuk PLTN mulai dikembangkan secara komersial sejak tahun 1954. Pada waktu itu di Rusia (USSR), dibangun dan dioperasikan satu unit PLTN air ringan bertekanan tinggi (VVER = PWR) yang setahun kemudian mencapai daya 5Mwe. Pada tahun 1956 di Inggris dikembangkan PLTN jenis Gas Cooled Reactor (GCR +Reaktor berpendingin gas) dengan daya 100 Mwe. Pada tahun 1997 di seluruh dunia baik dinegara maju maupun negara sedang berkembang telah dioperasikan sebanyak 443 unit PLTNyang tersebar di 31 negara dengan kontribusi sekitar 18 % dari pasokan tenaga listrik dunia dengan total pembangkitan dayanya mencapai 351.000 Mwe dan 36 unit PLTN sedang dalam tahap kontruksi di 18 negara.


1.2 Rumusan Masalah
           1.       Bagaimana cara kerja PLTN ?
           2.       Apa saja perbedaan PLTN dengan PLK ?
           3.       Bagaimana pandangan masyarakat terhadap PLTN di indonesia ?
           4.       Apa saja kelebihan dan kekurangan PLTN ?

1.3 Tujuan
Makalah ini bertujuan untuk mengetahui pandangan masyarakat terhadap PLTN di indonesia, Perbedaan antara PLK dengan PLTN, Cara kerja dari sebuah PLTN, dan Kelebihan dan kekurangan dari PLTN itu tersebut.





























BAB  II
PEMBAHASAN
2.1 Definisi PLTN
Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal dimana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1200 MWe. Hingga tahun 2005 terdapat 443 PLTN berlisensi di dunia, dengan 441diantaranya beroperasi di 31 negara yang berbeda. Keseluruhan reaktor tersebut menyuplai17% daya listrik dunia.

2.2 Perbedaan Pembangkit Listrik Konvensional (PLK) dengan PLTN
Dalam pembangkit listrik konvensional, air diuapkan di dalam suatu ketel melalui pembakaran bahan fosil (minyak, batubara dan gas). Uang yang dihasilkan dialirkan ke turbin uap yang akan bergerak apabila ada tekanan uap. Perputaran turbin selanjutnya digunakan untuk menggerakkan generator, sehingga akan dihasilkan tenaga listrik.
Pembangkit listrik dengan bahan bakar batubara, minyak dan g as mempunyai potensi yang dapat menimbulkan dampak lingkungan dan masalah transportasi bahanbakar dari tambang menuju lokasi pembangkitan. Dampak lingkungan akibat pembakaran bahan fosil tersebut dapat berupa CO2 (karbon dioksida), SO2 (sulfur dioksida) dan NOx (nitrogen oksida), serta debu yang mengandung logam berat. Kekhawatiran terbesar dalam pembangkit listrik dengan bahan bakar fosil adalah dapat menimbulkan hujan asam dan peningkatan pemanasan global.
Gb.1 Perbedaan PLK dengan PLTN
PLTN berperasi dengan prinsip yang sama seperti PLK, hanya panas yang digunakan untuk menghasilkan uap tidak dihasilkan dari pembakaran bahan fosil, tetapi dihasilkan dari reaksi pembelahan inti bahan fisil (uranium) dalam suatu reaktor nuklir. tenaga panas tersebut digunakan untuk membangkitkan uap di dalam sistem pembangkit uap ( Steam Generator) dan selanjutnya sama seperti pada PLK, uap digunakan untuk menggerakkan turbin- generator sebagai pembangkit tenaga listrik. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi.
Proses pembangkitan listrik ini tidak membebaskan asap atau debu yang mengandung logam berat yang dibuang ke lingkungan atau melepaskan partikel yang berbahaya seperti CO2, SO2, NOx ke lingkungan, sehingga PLTN ini merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan di lokasi PLTN sebelum dilakukan penyimpanan secara lestari.

2.3 Cara Kerja PLTN
Proses kerja PLTN hampir sama dengan proses kerja pembangkit listrik lain seperti PLTU. Yang membedakannya hanya sumber panas yang digunakan. PLTN mendapatkan sumber panas dari reaksi nuklir, sedangkan PLTU mendapatkan sumber panas dari pembakaran bahan bakar fosil seperti batu bara atau minyak bumi.


Gb.2 Reaksi fisi
Reaksi nuklir ini terjadi di dalam reaktor nuklir. Reaktor dirancang untuk memproduksi energi listrik melalui PLTN, dan hanya memanfaatkan energi panas yang timbul dari reaksi fisi. Sedangkan kelebihan neutron dalam teras reaktor akan dibuang atau diserap menggunakan batang kendali. Karena memanfaatkan panas hasil fisi, reaktor tersebut dirancang berdaya termal tinggi dari orde ratusan hingga ribuan MW. Terdapat dua jenis reaktor fisi nuklir, antara lain :
1.     thermal reactor powerplant;
2.     fast-breeder-reactor powerplan.
Pada reaktor termal untuk pembangkit komersial terdapat empat jenis reaktor, antara lain :
1.         Pressurized-water-reactor (PWR);
2.         Boiling Water Reactor (BWR);
3.         Gas Cooled Reactor (GCR);
4.         Pressurized Heavy Water Reactor (PHWR).

Berikut ini adalah beberapa contoh skema proses reaktor termal untuk PWR dan BWR :

Gb.3 Pressurized-water-reactor (PWR)

Gb.4 Boiling Water Reactor (BWR)

Secara singkat, proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN adalah sebagai berikut :
a.    Bahan bakar nuklir melakukan reaksi fisi sehingga melepaskan energi dalam bentuk panas yang sangat besar
b.    Panas dari hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, dapat berupa pendingin primer maupun sekunder, bergantung pada tipe reakor nuklir yang digunakan.
c.    Uap air yang dihasilkan ini dipakai untuk memutar turbin sehingga menghasilkan energi kinetik
d.   Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga menghasilkan arus listrik.

2.4 Pandangan Masyarakat terhadap Rencana Pembangunan PLTN di Indonesia
Seiring dengan rencana pemerintah mendirikan PLTN di Indonesia, timbul pro dan kontra dalam masyarakat mengenai hal ini. Sebagian yang kontra meninjau dari sisi sosio-kultural, politik, ekonomi, dan lingkungan dengan sedikit porsi tinjauan teknis, sedangkan pihak yang pro melihat dari sisi teknis dan implementasi pembangunannya semata dan dianggap kurang mengakomodasi pertimbangan-pertimbangan sosial, kultural, ekonomi, dan politik. Oleh karena itu, ada kesenjangan informasi yang perlu dipertemukan antara yang dilantukan oleh pihak yang pro maupun dan yang kontra. Sedikitnya porsi teknis yang dilantunkan pihak kontra sangat wajar karena latar belakang pengetahuan mereka tentang PLTN masih minim. Oleh karena itu, menjadi tantangan bagi pihak pro untuk menyajikan secara benar dan objektif dari sisi sosio-kultural, politik, ekonomi, dan lingkungan dengan porsi yang lebih besar sehingga dapat mengimbangi lantunan teknisnya.
Secara garis besar, masyarakat yang kurang senang akan kehadiran PLTN dapat digolongkan menjadi tiga kelompok, yaitu masyarakat awam, bagi mereka nuklir menimbulkan rasa takut karena kurang paham terhadap sifat-sifat nuklir tersebut. Yang termasuk kelompok ini antara lain : budayawan, politikus, tokoh keagamaan dan beberapa anggota musyawarah umum lainnya. Kedua adalah masyarakat yang sedikit pahamnya tentang nuklir. Mereka menyangsikan kemampuan orang Indonesia dalam mengoperasikan PLTN dengan aman, termasuk pengambilan limbah radioaktif yang timbul dari pengoperasian PLTN itu. Termasuk dalam kelompok ini adalah beberapa LSM dan kalangan akademis. Ketiga adalah kelompok masyarakat yang cukup paham tentang nuklir tetapi mereka menolak kehadiran PLTN karena mereka melihat PLTN dari kacamata berbeda sehingga keluar argument-argumen yang berbeda pula. Termasuk dalam kelompok ini adalah beberapa pejabat dan mantan pejabat pemerintah yang pernah berhubungan dengan masalah keenergian, kelistrikan, dan penukliran.

2.5 Jenis-jenis PLTN
PLTN dikelompokkan berdasarkan jenis reaktor yang digunakan. Tetapi ada juga PLTN yang menerapkan unit-unit independen, dan hal ini bisa menggunakan jenis reaktor yang berbeda. Sebagai tambahan, beberapa jenis reaktor berikut ini, di masa depan diharapkan menpunyai sistem keamanan pasif.
2.5.1 Reaktor Fisi
Reaktor daya fisi membangkitkan panas melalui reaksi fisi nuklir dari isotop fissiluranium dan plutonium.
Selanjutnya reaktor daya fisi dikelompokkan lagi menjadi:
·           Reaktor thermal menggunakan moderator neutron untuk melambatkan atau me- moderate neutron sehingga mereka dapat menghasilkan reaksi fissi selanjutnya. Neutron yang dihasilkan dari reaksi fissi mempunyai energi yang tinggi atau dalamkeadaan cepat, dan harus diturunkan energinya atau di lambatkan (dibua thermal) olehmoderator sehingga dapat menjamin kelangsungan reaksi berantai. Hal ini berkaitandengan jenis bahan bakar yang digunakan reaktor thermal yang lebih memilih neutron lambat ketimbang neutron cepat untuk melakukan reaksi fissi.
·           Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. Karena reaktor cepat menggunkan jenis bahan bakar yang berbeda denganreaktor thermal, neutron yang dihasilkan di reaktor cepat tidak perlu dilambatkan gunamenjamin reaksi fissi tetap berlangsung. Boleh dikatakan, bahwa reaktor thermal menggunakan neutron thermal dan reaktor cepat menggunakan neutron cepat dalamproses reaksi fissi masing-masing.
·           Reaktor sub kritis menggunakan sumber neutron luar ketimbang menggunakan reaksiberantai untuk menghasilkan reaksi fissi. Hingga 2004 hal ini hanya berupa konsepteori saja, dan tidak ada purwarupa yang diusulkan atau dibangun untuk menghasilkan listrik, meskipun beberapa laboratorium mendemonstrasikan dan beberapa ujikelayakan sudah dilaksanakan.
2.5.2 Reaktor Fusi
Fusi nuklir menawarkan listrik. Hal ini masih menjadi bidang penelitian aktif dengan skala besar seperti dapat dilihat di JET, ITER, dan Zmachine

2.6 Keselamatan Nuklir
Berbagai usaha pengamanan dilakukan untuk melindungi kesehatan dan keselamatan masyarakat, para pekerja reaktor dan lingkungan PLTN. Usaha ini dilakukan untuk menjamin agar radioaktif yang dihasilkan reaktor nuklir tidak terlepas ke lingkungan baik selama operasi maupun jika terjadi kecelakaan. Tindakan protektif dilakukan untuk menjamin agar PLTN dapat dihentikan dengan aman setiap waktu jika diinginkan dan dapat tetap di pertahakan dalam keadaan aman, yakni memperoleh pendinginan yang cukup. Untuk  ini  panas peluruhan yang dihasilkan harus dibuang dari teras reaktor, karena dapat menimbulkan bahaya akibat pemanasan lebih pada reaktor. Keselamatan terpasang dirancang berdasarkan sifat-sifat alamiah air dan uranium. Bila suhu dalam teras reaktor naik, jumlah neutron yang tidak tertangkap maupun yang tidak mengalami proses perlambatan akan bertambah, sehingga reaksi pembelahan berkurang. Akibatnya panas yang dihasilkan juga berkurang. Sifat ini akan menjamin bahwa teras reaktor tidak akan rusak walaupun sistem kendali gagal beroperasi.


2.6.1 Penghalang Ganda
PLTN mempunyai sistem pengaman yang ketat dan berlapis-lapis, sehingga kemungkinan terjadi kecelakaan maupun akibat yang ditimbulkannya sangat kecil. Sebagaicontoh, zat radioaktif yang dihasilkan selama reaksi pembelahan inti uranium sebagian besar (> 99%) akan tetap tersimpan di dalam matriks bahan bakar, yang berfungsi sebagaipenghalang pertama. Selama operasi maupun jika terjadi kecelakaan, kelongsongan bahanbakar akan berperan sebagai penghalang kedua untuk mencegah terlepasnya zat radioaktif tersebut keluar kelongsongan. Dalam hal zat radioaktif masih dapat keluar dari dalam kelongsongan, masih ada penghalang ketiga yaitu sistem pendingin.
Lepas dari sistempen dingin, masih ada penghalang keempat berupa bejana tekan dibuat dari baja dengan tebal ± 20 cm. Penghalang kelima adalah perisai beton dengan tebal 1,5-2 m. Bila zat radioaktif itumasih ada yang lolos dari perisai beton, masih ada penghalang keenam, yaitu sistempengungkung yang terdiri dari pelat baja setebal ± 7 cm dan beton setebal 1,5-2 m yang kedapudara. Jadi selama operasi atau jika terjadi kecelakaan, zat radioaktif benar-benar tersimpandalam reaktor dan tidak dilepaskan ke lingkungan. Kalaupun masih ada zat radioaktif yangterlepas jumlahnya sudah sangat diperkecil sehingga dampaknya terhadap lingkungan tidak berarti.
 








Gb.5 Sistem Keselamatan Reaktor dengan Penghalang Ganda

2.6.2 Pertahanan Berlapis
Disain keselamatan suatu PLTN menganut falsafah pertahanan berlapis ( defence indepth). Pertahanan berlapis ini meliputi : lapisan keselamatan pertama, PLTN dirancang,dibangun dan dioperasikan sesuai dengan ketentuan yang sangat ketat, mutu yang tinggi danteknologi mutakhir; lapis keselamatan kedua, PLTN dilengkapi dengan sistempengaman/keselamatan yang digunakan untuk mencegah dan mengatasi akibat-aibat darikecelakaan yang mungkin dapat terjadi selama umur PLTN dan lapis keselamatan ketiga,PLTN dilengkapi dengan sistem pengamanan tambahan, yang dapat diperkirakan dapat terjadipada suatu PLTN. Namun demikian kecelakaan tersebut kemungkinan terjadinya sedemikiansehingga tidak akan pernah terjadi selama umu uperasi PLTN.

2.7 Keuntungan dan Kerugian PLTN
Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah :
  1. Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah kacahanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikitmenghasilkan gas).
  2. Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon monoksida, sulfur dioksida, aerosol, mercury, nitrogen oksida, partikulate atau asap fotokimia.
  3. Sedikit menghasilkan limbah padat (selama operasi normal).
  4. Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan.
  5. Ketersedian bahan bakar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan.


Berikut ini beberapa hal yang menjadi kekurangan PLTN :
  • Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl(yang tidak mempunyai containment building).
  • Limbah nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hinggaribuan tahun.
2.8 Limbah Radioaktif
Selama operasi PLTN, pencemaran yang disebabkan oleh zat radioaktif terhadap linkungan dapat dikatakan tidak ada. Air laut atau sungai yang dipergunakan untuk membawa panas dari kondesnsor sama sekali tidak mengandung zat radioaktif, karena tidak bercampur dengan air pendingin yang bersirkulasi di dalam reaktor.
Gas radioaktif yang dapat keluar dari sistem reaktor tetap terkungkung di dalam sistem pengungkung PLTN dan sudah melalui sistem ventilasi dengan filter yang berlapis-lapis. Gas yang dilepas melalui cerobong aktivitasnya sangat kecil (sekitar 2 milicurie/tahun), sehingga tidak menimbulkan dampak terhadap lingkungan Pada PLTN sebagian besar limbah yang dihasilkan adalah limbah aktivitas rendah (70 – 80%). Sedangkan limbah aktivitas tinggi dihasilkan pada proses daur ulang elemen bakar nuklir bekas, sehingga apabila elemen bakar bekasnya tidak didaur ulang, limbah aktivitas tinggi ini jumlahnya sangat sedikit.

Penangan limbah radioaktif aktivitas rendah, sedang maupun aktivitas tinggi pada umumnya mengikuti tiga prinsip, yaitu :
         1.         Memperkecil volumenya dengan cara evaporasi, insenerasi, kompaksi/ditekan.
         2.         Mengolah menjadi bentuk stabil (baik fisik maupun kimia) untuk memudahkandalam transportasi dan penyimpanan.
         3.         menyimpan limbah yang telah diolah, di tempat yang terisolasi.
Pengolahan limbah cair dengan cara evaporasi/pemanasan untuk memperkecil volume, kemudian dipadatkan dengan semen (sementasi) atau dengan gelas masif (vitrifikasi) di dalam wadah yang kedap air, tahan banting, misalnya terbuat dari beton bertulang atau dari baja tahan karat.
Pengolahan limbah padat adalah dengan cara diperkecil volumenya melalui proses insenerasi/pembakaran, selanjutnya abunya disementasi. Sedangkan limbah yang tidak dapat dibakar diperkecil volumenya dengan kompaksi/penekanan dan dipadatkan di dalam drum/beton dengan semen. Sedangn limbah padat yang tidak dapat dibakar atau tidak dapat dikompaksi, harus dipotong-potong dan dimasukkan dalam beton kemudian dipadatkan dengan semen atau gelas masif.
Selanjutnya limbah radioaktif yang telah diolah disimpan secara sementara (10-50 tahun) di gudang penyimpanan limbah yang kedap air sebelum disimpan secara lestari. Tempat penyimpanan lembah lestari dipilih di tempat/lokasi khusus, dengan kondisi geologi yang stabil dan secara ekonomi tidak bermanfaat.
Gb.6 Cara Penyimpanan Limbah
2.9 Kebutuhan PLTN di Indonesia
Pada saat ini, kebutuhan energi di Indonesia semakin meningkat namun cadangan sumber energi utama yang tak terbarukan seperti minyak bumi, gas, dan batu bara semakin lama semakin menipis. Berbagai upaya dilakukan pemerintah untuk mengembangkan sumber daya energi alternatif seperti contohnya : bio massa, bio-etanol, biogas, serta sumber daya alam lain yang masih bisa dimanfaatkan untuk menggantikan fossil fuel seperti : panas bumi, air, angin, dan panas matahari.
Namun, masih ada satu energi alternatif lagi yang masih dalam pengembangan di Indonesia, yaitu energi nuklir. Pemanfaatan energi nuklir dapat meminimalkan ketergantungan negara dari energi fosil. Selain itu, pemanfaatan energi nuklir juga dapat mengurangi masalah pemanasan global yang sedang menjadi perhatian dunia saat ini.  Pada bidang kelistrikan, energi nuklir dapat dipakai pada sistem pembangkitan listrik tenaga nuklir (PLTN).
Dalam sudut pandang kebutuhan energi listrik di masa sekarang dan akan datang, sebagian besar masyarakat sepakat bahwa Indonesia harus meningkatkan produksi energinya yang sering gagal diantisipasi. Selain sebagai sumber penerangan, listrik mempunyai peranan lain, yaitu sebagai pendorong kemajuan perekonomian suatu negara. Oleh karena itu, ada suatu hubungan antara konsumsi listrik dengan keadaan perekonomian suatu masyarakat. Dari beberapa sumber energi yang ada perlu ditentukan juga beberapa alternatif pilihan yang sudah sering ditawarkan oleh pemerintah dan banyak dibahas, dikaji, dikomentari oleh para pakar energi, pakar listrik, maupun masyarakat umum, dan PLTN merupakan salah satu alternatif untuk mengantisipasi kebutuhan listrik Indonesia yang terus meningkat tersebut.
Sedangkan kawasan kawasan Timur Tengah, sebagai kawasan negara sumber penghasil minyak saat ini kecenderungan untuk memanfaatkan PLTN sebagai opsi pemasok penaga listriknya. Seperti Uni Arab Emirat langsung merencanakan pembangunan PLTN empat unit dari sepuluh yang diusulkan. Sedangkan di Eropa khususnya negara Prancis, seluruh kebutuhan listrik negaranya di suplai dari PLTN.




BAB III
PENUTUP
3.1 Kesimpulan
Dari uraian di atas maka dapat diambil kesimpulan mengenai Pembangkit Listrik Tenaga Nuklir :
  • Pada proses kerja dari PLTN hampir sama dengan proses kerja dari Pembangkit Listrik Konvensional, hanya saja yang membedakannya adalah sumber panas yangdigunakan. Pada PLTN mendapatkan suplai panas dari reaksi nuklir.
  • PLTN dikelompokkan berdasarkan jenis reaktor yang digunakan, yaitu reaktor fisi dan reaktor fusi.
  • Reaktor daya fisi membangkitkan panas melalui reaksi fisi nuklir dari isotop fissiluranium dan plutonium. Reaktor daya fisi dibagi menjadi : reaktor thermal, reaktor cepat dan reaktor subkritis.
  • Reaktor daya fusi menawarkan kemungkinan pelepasan energi yang besar denganhanya sedikit limbah radioaktif yang dihasilkan serta dengan tingkat keamanan yanglebih baik.
  • Beberapa usaha pengamanan dilakukan untuk melindungi kesehatan dan keselamatanmasyarakat, para pekerja reaktor dan lingkungan PLTN diantaranya dengan penghalang ganda dan pertahanan berlapis.
  • PLTN memiliki keuntungan dan kerugian dalam pelaksanaannya, diantara beberapa keuntungan salah satunya adalah Tidak menghasilkan emisi gas rumah kaca (selamaoperasi normal) gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas. Dan salah satu kerugiannya adalah Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl(yang tidak mempunyai containment building).


3.2    Saran
       Pemerintah harus mensosialisasikan PLTN tentang kelebihan dan sistem pengamanan dari PLTN tersebut. Agar masyarakat merasa aman dan nyaman jika PLTN akan di bangun di indonesia.
























Daftar Pustaka
Hardianto, Toto. Kuliah Pembangkitan : Opsi Nuklir Dalam Kebijakan Energi Nasional. ITB : 2009.
Hardianto, Toto. Kuliah Pembangkitan : Pembangkit Listrik Tenaga Nuklir. Kelompok Keahlian Konversi Energi, ITB : 2009
www.batan.go.id
NN. Pemanfaatan PLTN sebagai Pembangkit Listrik Indonesia.
(Sumber: Andang Nugroho dan Hindro Mujianto - Permias)
Ir. Nanan Tribuana, Subdirektorat Pengawasan Lingkungan Ketenagalistrikan Ditjen LPE 
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas



Tidak ada komentar:

Posting Komentar